Adaptive regularization of neural networks using conjugate gradient

نویسندگان

  • Cyril Goutte
  • Jan Larsen
چکیده

Recently we suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique. Numerical experiments with feed-forward neural networks successfully demonstrate improved generalization ability and lower computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling

With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...

متن کامل

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

A conjugate gradient based method for Decision Neural Network training

Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...

متن کامل

Training Large Neural Networks

We describe regularization tools for training large-scale artiicial feed-forward neural networks. We propose algorithms that explicitly use a sequence of Tikhonov regularized nonlinear least squares problems. For large-scale problems, methods using new special purpose automatic diierentiation are used in a conjugate gradient method for computing a truncated Gauss-Newton search direction. The al...

متن کامل

Conjugate gradient neural network in prediction of clay behavior and parameters sensitivities

The use of artificial neural networks has increased in many areas of engineering. In particular, this method has been applied to many geotechnical engineering problems and demonstrated some degree of success. A review of the literature reveals that it has been used successfully in modeling soil behavior, site characterization, earth retaining structures, settlement of structures, slope stabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998